The generator matrix 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X X X X 2 X X 1 1 2 1 1 1 1 1 1 X 1 1 1 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 0 0 2 2 2 0 2 2 2 0 2 0 2 0 0 2 2 2 2 0 2 0 0 0 0 2 0 0 0 2 2 0 0 2 0 0 2 0 0 0 0 0 0 0 0 0 2 0 0 2 2 2 2 2 2 0 0 0 0 0 2 2 2 2 2 0 2 0 2 2 2 0 2 0 0 0 2 0 2 0 0 0 0 2 2 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 2 2 2 2 2 0 2 2 2 0 2 2 2 0 2 0 0 2 2 2 0 0 2 0 2 2 2 2 2 0 0 0 0 2 2 2 0 2 0 2 2 2 2 0 0 0 0 2 0 0 0 0 0 0 2 0 2 2 0 2 2 2 0 2 2 2 0 0 0 0 0 2 0 0 0 2 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 0 2 2 0 2 0 0 0 0 0 2 0 0 0 0 0 2 0 0 2 2 2 2 2 0 0 2 0 0 2 2 0 0 0 2 2 0 0 2 0 0 2 2 2 2 2 0 2 2 0 0 2 0 2 0 0 2 2 0 0 0 0 0 0 0 0 2 0 0 0 2 0 0 0 2 2 0 0 2 0 0 2 2 0 2 0 2 0 2 0 2 0 2 0 2 2 2 0 2 0 2 2 0 0 2 2 2 2 2 0 2 0 2 0 2 0 0 0 0 0 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 2 2 0 0 2 2 2 0 0 2 2 2 0 0 2 2 2 2 2 2 0 2 2 0 0 2 2 2 0 2 2 2 2 0 0 0 0 0 0 0 0 0 2 0 2 2 2 2 0 0 0 0 2 0 0 0 2 2 2 2 0 0 0 2 0 2 0 0 0 2 2 2 0 0 2 2 2 2 0 0 0 2 0 2 0 2 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 0 0 2 2 2 2 2 0 2 0 2 0 2 0 2 2 0 0 2 2 2 2 0 0 0 0 0 0 2 0 0 2 2 2 2 2 2 2 2 2 0 0 generates a code of length 55 over Z4[X]/(X^2+2,2X) who´s minimum homogenous weight is 44. Homogenous weight enumerator: w(x)=1x^0+99x^44+220x^48+88x^50+365x^52+512x^53+216x^54+1024x^55+406x^56+512x^57+200x^58+250x^60+8x^62+127x^64+51x^68+14x^72+2x^76+1x^92 The gray image is a code over GF(2) with n=220, k=12 and d=88. This code was found by Heurico 1.16 in 1.44 seconds.